中古品: ¥3,000
配送料 ¥1130 3月31日-4月2日にお届け(8 時間 43 分以内にご注文の場合)
詳細を見る
中古商品: 良い | 詳細
コンディション: 中古商品: 良い
コメント: 薄汚れ有、表紙擦れ有、地少イタミ有、本文は概ね良好。2015年発行1050ページ。
Kindleアプリのロゴ画像

無料のKindleアプリをダウンロードして、スマートフォン、タブレット、またはコンピューターで今すぐKindle本を読むことができます。Kindleデバイスは必要ありません

ウェブ版Kindleなら、お使いのブラウザですぐにお読みいただけます。

携帯電話のカメラを使用する - 以下のコードをスキャンし、Kindleアプリをダウンロードしてください。

KindleアプリをダウンロードするためのQRコード

著者をフォロー

何か問題が発生しました。後で再度リクエストしてください。

Machine Learning: A Bayesian and Optimization Perspective ハードカバー – 2015/4/10

5つ星のうち4.6 28

この商品には新版があります:

Machine Learning: A Bayesian and Optimization Perspective
¥14,645
(28)
残り8点(入荷予定あり)

商品の説明

レビュー

"Overall, this text is well organized and full of details suitable for advanced graduate and postgraduate courses, as well as scholars…" --Computing Reviews

"Machine Learning: A Bayesian and Optimization Perspective, Academic Press, 2105, by Sergios Theodoridis is a wonderful book, up to date and rich in detail. It covers a broad selection of topics ranging from classical regression and classification techniques to more recent ones including sparse modeling, convex optimization, Bayesian learning, graphical models and neural networks, giving it a very modern feel and making it highly relevant in the deep learning era. While other widely used machine learning textbooks tend to sacrifice clarity for elegance, Professor Theodoridis provides you with enough detail and insights to understand the "fine print". This makes the book indispensable for the active machine learner." --Prof. Lars Kai Hansen, DTU Compute - Dept. Applied Mathematics and Computer Science Technical University of Denmark

"Before the publication of Machine Learning: A Bayesian and Optimization Perspective, I had the opportunity to review one of the chapters in the book (on Monte Carlo methods). I have published actively in this area, and so I was curious how S. Theodoridis would write about it. I was utterly impressed. The chapter presented the material with an optimal mix of theoretical and practical contents in very clear manner and with information for a wide range of readers, from newcomers to more advanced readers. This raised my curiosity to read the rest of the book once it was published. I did it and my original impressions were further reinforced. S. Theodoridis has a great capability to disentangle the important from the unimportant and to make the most of the used space for writing. His text is rich with insights about the addressed topics that are not only helpful for novices but also for seasoned researchers. It goes without saying that my department adopted his book as a textbook in the course on machine learning." --Petar M. Djuric, Ph.D. SUNY Distinguished Professor Department of Electrical and Computer Engineering Stony Brook University, Stony Brook, USA

"As someone who has taught graduate courses in pattern recognition for over 35 years, I have always looked for a rigorous book that is current and appealing to students with widely varying backgrounds. The book on Machine Learning by Sergios Theodoridis has struck the perfect balance in explaining the key (traditional and new) concepts in machine learning in a way that can be appreciated by undergraduate and graduate students as well as practicing engineers and scientists. The chapters have been written in a self-consistent way, which will help instructors to assemble different sections of the book to suit the background of students" --Rama Cellappa, Distinguished University Professor, Minta Martin Professor of Engineering, Chair, Department of Electrical and Computer Engineering, University of Maryland, USA

著者について

Sergios Theodoridis is professor of machine learning and signal processing with the National and Kapodistrian University of Athens, Athens, Greece and with the Chinese University of Hong Kong, Shenzhen, China.

He has received a number of prestigious awards, including the 2014 IEEE Signal Processing Magazine Best Paper Award, the 2009 IEEE Computational Intelligence Society Transactions on Neural Networks Outstanding Paper Award, the 2017 European Association for Signal Processing
(EURASIP) Athanasios Papoulis Award, the 2014 IEEE Signal Processing Society Education Award, and the 2014 EURASIP Meritorious Service Award. He has served as president of EURASIP and vice president for the IEEE Signal Processing Society and as Editor-in-Chief IEEE Transactions on Signal processing. He is a Fellow of EURASIP and a Life Fellow of IEEE.
He is the coauthor of the best selling book Pattern Recognition, 4th edition, Academic Press, 2009 and of the book Introduction to Pattern Recognition: A MATLAB Approach, Academic Press, 2010.

登録情報

  • 出版社 ‏ : ‎ Academic Press; 第1版 (2015/4/10)
  • 発売日 ‏ : ‎ 2015/4/10
  • 言語 ‏ : ‎ 英語
  • ハードカバー ‏ : ‎ 1062ページ
  • ISBN-10 ‏ : ‎ 0128015225
  • ISBN-13 ‏ : ‎ 978-0128015223
  • 寸法 ‏ : ‎ 19.69 x 5.08 x 24.13 cm
  • カスタマーレビュー:
    5つ星のうち4.6 28

著者について

著者をフォローして、新作のアップデートや改善されたおすすめを入手してください。
Sergios Theodoridis
Brief content visible, double tap to read full content.
Full content visible, double tap to read brief content.

著者の本をもっと発見したり、よく似た著者を見つけたり、著者のブログを読んだりしましょう

カスタマーレビュー

星5つ中4.6つ
5つのうち4.6つ
28グローバルレーティング

この商品をレビュー

他のお客様にも意見を伝えましょう

上位レビュー、対象国: 日本

日本からの0件のレビューとお客様による0件の評価があります

他の国からのトップレビュー

すべてのレビューを日本語に翻訳
Daniel
5つ星のうち5.0 A very complete, and high level book
2020年2月6日にメキシコでレビュー済み
Amazonで購入
Amazon Customer
5つ星のうち5.0 Great book for professionals
2016年2月23日にアメリカ合衆国でレビュー済み
Amazonで購入
9人のお客様がこれが役に立ったと考えています
レポート
John Wick
5つ星のうち5.0 Five Stars
2016年3月10日に英国でレビュー済み
Amazonで購入
Andres Mendez
5つ星のうち5.0 Great Book!!! A Machine Learning must....
2015年11月25日にアメリカ合衆国でレビュー済み
Amazonで購入
11人のお客様がこれが役に立ったと考えています
レポート
Stergios Papadimitriou
5つ星のうち5.0 The Machine Learning Bible!
2018年4月18日にアメリカ合衆国でレビュー済み
Amazonで購入