31パーセントの割引で¥12,849 税込
参考価格: ¥18,677

他に注記がない場合、参考価格とは、製造業者、卸売業者、輸入代理店(「製造業者」)などの小売業者以外が設定した、商品のカタログなど印刷物で発表された、または製造業者が小売業者に提示する参考価格・推奨小売価格を意味します。ただし、Amazonが製造・販売するデバイスの参考価格については、他に注記が無い場合、個人のお客様向けに最近相当期間表示されていた価格を意味します(注記の内容を含む参考価格の詳細については、該当する商品詳細ページをご確認ください)。なお、割引率の表示は1%毎に行われており小数点以下は四捨五入しています。
詳細はこちら
ポイント: 128pt  (1%)  詳細はこちら
配送料 ¥1000 5月20日-28日にお届け(9 時間 16 分以内にご注文の場合)
詳細を見る
残り2点 ご注文はお早めに 在庫状況について
¥12,849 () 選択したオプションを含めます。 最初の月の支払いと選択されたオプションが含まれています。 詳細
価格
小計
¥12,849
小計
初期支払いの内訳
レジで表示される配送料、配送日、注文合計 (税込)。
出荷元
Superfasttextbooks
出荷元
Superfasttextbooks
販売元
(175件の評価)
販売元
(175件の評価)
支払い方法
お客様情報を保護しています
お客様情報を保護しています
Amazonはお客様のセキュリティとプライバシーの保護に全力で取り組んでいます。Amazonの支払いセキュリティシステムは、送信中にお客様の情報を暗号化します。お客様のクレジットカード情報を出品者と共有することはありません。また、お客様の情報を他者に販売することはありません。 詳細はこちら
支払い方法
お客様情報を保護しています
Amazonはお客様のセキュリティとプライバシーの保護に全力で取り組んでいます。Amazonの支払いセキュリティシステムは、送信中にお客様の情報を暗号化します。お客様のクレジットカード情報を出品者と共有することはありません。また、お客様の情報を他者に販売することはありません。 詳細はこちら
Kindleアプリのロゴ画像

無料のKindleアプリをダウンロードして、スマートフォン、タブレット、またはコンピューターで今すぐKindle本を読むことができます。Kindleデバイスは必要ありません

ウェブ版Kindleなら、お使いのブラウザですぐにお読みいただけます。

携帯電話のカメラを使用する - 以下のコードをスキャンし、Kindleアプリをダウンロードしてください。

KindleアプリをダウンロードするためのQRコード

何か問題が発生しました。後で再度リクエストしてください。

Higher Operads, Higher Categories (London Mathematical Society Lecture Note Series, Series Number 298) ペーパーバック – 2009/6/1

5.0 5つ星のうち5.0 1個の評価

ダブルポイント 詳細
{"desktop_buybox_group_1":[{"displayPrice":"¥12,849","priceAmount":12849.00,"currencySymbol":"¥","integerValue":"12,849","decimalSeparator":null,"fractionalValue":null,"symbolPosition":"left","hasSpace":false,"showFractionalPartIfEmpty":true,"offerListingId":"iDd%2F%2BbGDX5p%2FFWiyjuIRkGqH6ffLzSjV7CAFVchSSE6%2BTA9491eg77Xqr9jXXSB5acInNbkIMnhOUS6fcza2FkY1kOumNkXPo0GoyVtc%2B6SLjd4M8ffpzV7m18MbTJAuH1mNfT%2BzwXABTY74zou1bwLXQxL%2By%2FJ1Xt3KtnLrHYwZYs%2BZMxKVhA%3D%3D","locale":"ja-JP","buyingOptionType":"NEW","aapiBuyingOptionIndex":0}]}

購入オプションとあわせ買い

Higher-dimensional category theory is the study of n-categories, operads, braided monoidal categories, and other such exotic structures. It draws its inspiration from areas as diverse as topology, quantum algebra, mathematical physics, logic, and theoretical computer science. The heart of this book is the language of generalized operads. This is as natural and transparent a language for higher category theory as the language of sheaves is for algebraic geometry, or vector spaces for linear algebra. It is introduced carefully, then used to give simple descriptions of a variety of higher categorical structures. In particular, one possible definition of n-category is discussed in detail, and some common aspects of other possible definitions are established. This is the first book on the subject and lays its foundations. It will appeal to both graduate students and established researchers who wish to become acquainted with this modern branch of mathematics.
続きを読む もっと少なく読む

登録情報

  • 出版社 ‏ : ‎ Cambridge University Press (2009/6/1)
  • 発売日 ‏ : ‎ 2009/6/1
  • 言語 ‏ : ‎ 英語
  • ペーパーバック ‏ : ‎ 448ページ
  • ISBN-10 ‏ : ‎ 0521532159
  • ISBN-13 ‏ : ‎ 978-0521532150
  • 寸法 ‏ : ‎ 15.24 x 2.87 x 22.86 cm
  • カスタマーレビュー:
    5.0 5つ星のうち5.0 1個の評価

著者について

著者をフォローして、新作のアップデートや改善されたおすすめを入手してください。
Tom Leinster
Brief content visible, double tap to read full content.
Full content visible, double tap to read brief content.

著者の本をもっと発見したり、よく似た著者を見つけたり、著者のブログを読んだりしましょう

カスタマーレビュー

星5つ中5つ
5つのうち5つ
1グローバルレーティング

この商品をレビュー

他のお客様にも意見を伝えましょう

上位レビュー、対象国: 日本

日本からの0件のレビューとお客様による0件の評価があります

他の国からのトップレビュー

すべてのレビューを日本語に翻訳
Dr. Lee D. Carlson
5つ星のうち5.0 A very interesting overview
2004年9月19日にアメリカ合衆国でレビュー済み
Amazonで購入
Structures such as braided monoidal categories, operads, and Hopf algebras are familiar to those who have studied topological quantum field theory, knot theory, string theory, and the renormalization procedure in quantum field theory. This book attempts, and succeeds, in presenting to the interested reader an overview of higher category theory, which subsumes the aforementioned topics. It is not however a book on applications, but instead details the purely mathematical aspects of higher category, clarifying for example the difference between `weak' n-categories and `strict' n-categories. The author though has not written a book in the typical "definition-theorem-proof" style, as he motivates the subject very well, and does not hesitate to use diagrams to get his point across. Indeed, he is careful to point out that the subject is inherently topological in its nature, and that diagrams used to illustrate higher-dimensional structures can be viewed as topological structures. The braided monoidal category that arises in knot theory is a perfect example of this.

The author introduces higher-dimensional category theory as one that uses "higher-dimensional arrows", in analogy to ordinary category as one that uses 1-dimensional arrows. Higher-dimensional category theory or `n-category theory,' is viewed as a generalization of the notion of category. To motivate the concept of a weak n-category, the author reminds the reader of the attempt to prove to what extent the loop group in differential topology is in fact a topological group. The composition of paths in the loop groups is not associative, but rather associative up to homotopy. Associativity does hold in strict n-categories but not in weak n-categories. As another example of non-associativity, the author discusses the fundamental omega-groupoid, which is the higher-dimensional category arising from a topological space. Several examples of weak n-categories are given in the motivating chapter of the book.

The first chapter is an overview of classical category theory, most of which may be review for readers familiar with it. Of particular importance is the notion of a monoidal category, which for the case of a strict monoidal category, generalizes the familiar tensor product operation. The tensor operation is generalized to that of a functor on a category that obeys strict associativity and unit laws. Weak monoidal categories are also defined, where the functor now obeys associativity and unit laws only up to isomorphism. These are the `coherence isomorphisms', and these satisfy the `pentagon' and `triangle axioms.' Modules over commuative rings with the usual tensor product are monoidal categories.

The author introduces operads in chapter two, concentrating first on multicategories, which are collections of objects on which are defined maps or "arrows", and compositions that satisfy associativity and unit properties. Operads are multicategories with only one object, and can be viewed as an abstraction of a set of composable functions of several variables where the variables can be permuted. Several examples are given of multicategories with many objects, including how a monoidal category can give rise to a multicategory. Operads appear in physical applications, such as string field theory and conformal field theory, which are not discussed in the book, but the author gives many examples of operads that make their properties readily apparent. One of these involves iterated loop spaces, where operads arose historically.

After a further discussion of monoidal categories in chapter 3, the author spends part two of the book solely on operads. One of the first goals of the author is formalize the notion of an input type, so as to allow more than just finite sequences of objects. For each input type he defines a theory of operads and multicategories, which yields the "plain" operad when the inputs are finite sequences. The author also discusses how to start with a monad T on any category and construct `T-multicategories'. T-operads are then T-multicategories with one object, and algebras can be associated to T-multicategories. These algebras are an analog of the "representation" or "model" for the T-multicategory. The author's work on "free category" or `fc-multicategories', which are 2-dimensional examples of these generalized multicategories. Fc-multicategories are T-multicategories on the free category (fc) monad on the category of directed graphs. As a very interesting example of an fc-multicategory, the author discusses one which encapsulates (in a single structure) rings, homomorphisms of rings, modules over rings, homomorphisms of modules, and tensor products of modules.

Also discussed in this part is the notion of an `opetope' (for "operation polytope"), which are a kind of generalization of the simplices of simplicial geometry. The opetopes are thus the "polytopes" of higher-dimensional category theory, and are defined by first taking for every natural number and defining a category and monad inductively. The zeroth category is Set and the zeroth monad is the identity. This gives rise to an infinite sequence of opetopes, with the zeroth opetope being 1. The nth category is then canonically isomorphic to Set modulo the nth opetope. A 2-opetope is the natural numbers, while a 3-opetope is the collection of trees. The author shows how to construct a category of n-dimensional pasting diagrams for each natural number n, where for n = 1 is the category of finite totally ordered sets, and for n = 2, the category of trees. The geometric connotations of the pasting diagrams are obvious, as well as their analogy to simplicial objects. An opetopic n-pasting diagram is defined as an (n+1)-opetope for each natural number n. 2-pasting diagrams correspond to trees, and the author shows how to construct `stable trees', i.e. those trees whose vertices have at least two branches coming out of them. The relation of stable trees to the constructions of Stasheff are discussed, along with the connection of opetopes to the construction of weak n-categories.
16人のお客様がこれが役に立ったと考えています
レポート