ブログトップ 記事一覧 ログイン 無料ブログ開設

急がば回れ、選ぶなら近道

2018-01-05 Asakusa 0.10.0

Asakusa 0.10.0について

あけましておめでとうございます。今年もよろしくお願いします。

のっけからアレですが、これはAsakuas Advent Calendar 2017のエントリーなわけ(個人的には12/31までがクリスマスとかそんな感じの年末催事なのでそのつもり:2017/12/30に追記)(って書いてたら、年が明けたけど、個人的にはあと3ヶ月は2017年の感じなので:2018/1/4にさらに追記)

Asakusaで、先日0.10.0をリリースしている。ある程度刻んでリリースして行く、というのがAsakusaのポリシーではあるが、今回のリリースはちょっとした節目にはなっている。
http://www.asakusafw.com/

◆一つの区切りとして

とうとうというか、今更というか、ようやくというか。MapReduceのサポートについて一つの道筋をつけた。Hadoop界隈では常識だが、すでにMapReduceは新規の開発はされておらず、プロトコルとしてはすでにその役割を終えている。”Goodbye MapReduce”と言われたのは2015年ぐらいだったので、もう2年は経過している。

それでも裸MapReduceでの鋭意開発中のプロジェクトなどもちょいちょい聞こえており、日本のSI屋の宿業(と書いて怨念と読む)については何をか言わんやである。

とまれ、MapReduceをどうするという問題であるが、Asakusaの立ち位置が業務システムをサポートする役割がある以上、OSS業界が「はい、さようなら」したからと言って、こちらも「はい、さようなら」というわけには行かない。なので、どう筋道をつけていくかが課題ではあった。

いろいろ議論があったけれども、結論は明確で、今後の「新機能」についてはMapReduceはサポートしない、という方針だ。これは別に「現状のAsakusaで書かれたアプケーションをサポートしない」ということではない。今後も現状(すなわち0.10.0以前)のAsakusaで書かれたアプリケーションはサポートするし、リコンパイルすれば今後サポートされるプラットフォームでも動くだろう。ただし、将来のAsakusaの言語拡張は現状のMapReduceでは動かない、ということになる。

広い意味でのDAGでの実行処理という意味では、本来はいろいろな実装選択が可能であり、MapReduceを前提するのではどうしても制約が強すぎるという面がある。MapReduceの制約は、現状の発展しつつある分散プラットフォーム上ではメリットよりもデメリットが大きい。今後の機能拡張を行うのであれば、それは外していきたい。

◆新機能

従来のMapReduceが前提であれば、実装できない機能で、要望の強いものを順次実装している。詳しくは、http://docs.asakusafw.com/0.10.0/release/ja/html/release-notes.html
になるが、Viewだとか、使い勝手をあげる演算子とか、環境周りの強化をおこなっている。開発効率は上がっていくだろう。

繰り言になるがAsakusaの後方互換性は維持される。したがって、現状の機能で構築されたAsakusaアプリケーションメンテナンスしていくことは可能だし、プラットフォームを変更しても利用していくことは可能だ。

アプリケーションライフサイクル

果たして、日本の業務系システムのライフサイクルOSSミドルのそれは端(ハナ)から一致しない。今後この乖離は拡大することはあっても縮まることはないだろう。

システムとは作った人/運用している人、「そのもの」である。日本全体の老齢化は、そのまま「システムの老齢化」になり、それはそのまま延命化になる。その一方で、OSSミドルは巨大ユーザお抱えのコミッターが開発の主役になり、開発サイクルは特定ユーザの都合に左右される。概ね、OSSライフサイクルそれ自体は短くなる。このギャップは広がる一方だろう。

世界のソフトウェアはITベンダーによる開発から特定ユーザによる開発に軸足が移りつつある。また、ITベンダーそもそもその数を減らしつつある。日本国内に目を向ければ、SIビジネス圧力下では、ソフトウェアは付属品にすぎない。結果、投資回収の目処が立たず、商用ミドルウェアの開発はゼロに近くなっている。以前にもまして、F/N/H/NTTD各社は、実際は海外の少数特定ベンダー製品の利用か、またはOSSの依拠している。

すなわち、日本の企業ユーザは自社のシステムを維持するのであれば、ライフサイクルの異なるOSSに無理やり追随していくか、または少数ベンダーの寡占に付き合って高い税金を払っていくしか選択肢がなくなる。というか、実際そうなりつつある。

Asakusaの問題意識のひとつはこのギャップにある。DSLで書いていてくれば、その投資可搬性(portability)を保証することを、そのギャップの解決案の一つとして提示している。実際に効果も出ている。

◆実際のケースとして

Asakusaの主たるプラットフォームは年月を追って変化している。すなわちHadoop→Spark→M3BPだ。これはパフォーマンスとデータサイズのフィッティング、そしてサーバサイドのアーキテクチャの変更によるところが大きい。

当初のHadoopそもそも分散処理の導入が目的であった。現状では無駄に見えるオーバーヘッドを犠牲にしても、当時は分散処理の導入はメリットが大きかった。それほどまでに従来のバッチ処理は遅かった。

ある程度Hadoopが普及してくるとそのパフォーマンスの悪さが目立つ。そんな中でより無駄をなくしてスループットをあげる目的でSparkが登場してきた。分散処理のOSSMapReduceも完全に廃棄され、現状のデファクトはSparkだろう。(とはいえ、現在のSparkも今後2-3年もすれば別の形になるか、または別の基盤にその道を譲るだろう)

Asakusaもそれに追随していった。そしてここ2年はサーバサイドのアーキテクチャメニーコア安価なメモリーによるメモリー大容量化が顕著だ。これを乗りこなす形でM3BPをサポートするようになってきている。

ノーチラスが直接サポートするお客さんの環境も、同様に変化しつつある。某小売さんのバックエンドはHadoopからSparkに移行が完了した。某食品製造のお客さんの環境はHadoop→Spark→M3BPに移行が終わっている。また某社の原価計算はSparkからM3BPに移行中だ。どれも再SIのコストはかかっていない。

特に某小売さんのバックエンドはレジ締め・テナント処理・仕入買掛・支払まですべて処理するバッチ処理の塊の大きなシステムで、実際のSIでは担当したSI屋では大赤字だった案件だ。現在、ミドルはウチで、作りの部分は当時の下請けのパートナーと運用・追加開発をしている。大きな規模のシステムなのでプラットフォームの変更は、大規模なストレートコンバージョンか、やり直しSIになり、どうしようもないコストになるのが普通だが、Asakusaで全面的に書かれていたため、保守+アルファのコストで移行ができた。

個人的には「大きな負債」になる可能性が大いにあったシステムなので、ほとんどコストがかからずに新しい環境に移行できているのは、ものすごくホッとしている。稼働して高々5-6年で「プラットフォームが完全に賞味期限切れなんで、新しいものに乗り換えませんか?ちなみに値段は云億円です」と言う羽目にならなくてホントよかった。

◆今後の方針

以前から書いているように今後のサーバアーキテクチャは、メニーコア・大量メモリーが基本になる。同時にまた、不揮発性メモリーの利用も視野に入ってくるだろう。そうなると、現在の、特にDBを始めとするミドルウェアは抜本的な「作り変え」が必要になるだろう。

特に現状のDBは、根底の前提がディスクベースになっているため対応することが非常に困難だ。この新しいアーキテクチャに対応したデータベースが登場してくるだろう。大規模OLTPや、またそのOLTPとOLAPを統合したHTAPにあたるようなものだ。今後のAsakusaの対応焦点はここになる。

  • 大規模OLTP

これについては特段述べる必要もない。現在のRDBの次世代版であり、事実上、既存RDBのリプレースを担うミドルになる。Oracle, MS, SAP-HANAといった商用DBはすでに対応を始めているし、新しいOSSも試験的ながら開発されている。このようなOLTPのバッチ処理の高速化を担うことが今後のAsakusaの役割になると思う。

メニーコア・大量メモリーOLTPでのAsakusaの処理の肝要は、“個人的”には「Asakusaによる並列書き込みとDBサイドのトランザクション制御、とくにserializabilityの確保、との調和」になると思っている。現状のRDBでも次世代OLTPでも書き込み処理のパフォーマンスは常に戦場になる。(OLTPに関して言えば、OCCにおいてはwrite-lockからのvalidationが、MVCCにおいては、最良のケースでwrite-lock freeになるが、その場合で、も同じくvalidationのコストがかかる。現状のRDBとは“同じ書き込み処理”での戦いと言っても、その様相はかなり異なる)

これをAsakusaの目線で言えば、バッチ処理では「一斉書き込み」をシーケンスに行なっていてはスループットが上がらない。メニーコアを利用した並列書き込みが必須だが、処理自体はACIDなロングトランザクションに包含されなければならない。とはいえ、そのままトランザクションに放り込むと「まんまシーケンス処理」になり停滞する。ということでアレコレ工夫が必要になる。

果たしてAsakusaがOLTPに介入するとして、どのような方式でそれぞれのトランザクション・マネージャと連携していくかを模索する必要がある。OSSであれば、やっていることがわかるので、より下位レイヤーに、商用DBであればやっていることがよくわからないので、必然的に比較的上位レイヤーでの介入になると思う。いずれにしても、まぁ要するに簡単な話ではない。

ただし、この処理がちゃんとできるのであれば、現在の業務系のバッチ処理はトータルの処理時間が、いよいよ分から秒単位での世界になっていくだろう。従前では、データを分散クラスターに移してしまえば、数時間かかっていた処理は、Hadoop, Spark, M3BPの中で数分の処理にまで短縮することができていた。ただし、データをクラスターに移す、または元のシステムに戻すことに時間がかかり、トータルの時間コストはやはり短縮が困難であった。

OLTP上で分散バッチ処理が実行可能であれば、RDB上のデータを分散クラスター環境にETLする必要がない。データのダウンロード/アップロードはコストがかかっていたが、それが不要になるわけだ。これはいろいろとできることが変わる。

  • HTAP

Hybrid Transactional and Analytical Processingの略で、要するに今までのOLTP(業務系・基幹系)とOLAP(分析系)の実行基盤を統合したものだ。外側からは透過的に一つのDBに見える。透過的、というのがポイントで、実際は「物理的に一つのデータベース」というよりも、OLTPコアとOLAPコアは別々に処理する複合的なアーキテクチャが主流だったりする。ただ両者の間は高速のインターコネクトで繋いでおり、データ更新のOLAPへの遅延はmsec程度のレンジに収まっている。OLAPの用途によってはほぼリアルタイムに見えるはずだ。(また、OLTPとOLAPの処理コアのみを分離し、データは共有メモリーに置くという方式もある。)

ノードやシステムを今までの「業務系」と「分析系」と分ける必要がない。特に今後は機械学習の結果やデータ分析の結果を自動的にシステムの挙動に反映させることが必要になるだろう。その場合には、分析系システムの業務系システムからのデータの取得、分析系システムの計算結果の業務系システムへの反映、といったタイムラグを可能な限り少なくすることが望ましい。現在のビックデータ・IoTAIといったより高度な情報を探究する流れの中では、HTAPはその利用を最大限に活用するための必然的な仕組みであると言える。

もっとも、OLTPのデータ更新とOLAPのデータ参照の同期と言っても、簡単な話ではなく、今までと同じように様々な問題を解決しなければならない。

一つは耐障害性の話で、これは通常の分散ノードクラスターでの障害対策とロジックは通底する。OLAP側で複数のread replicaをつくり、OLTP側でwrite replicaをつくった場合に、それぞれが障害を起こした場合にどう対処するか?という問題だ。

今までの分散ノードクラスターとはレイテンシーの桁が違うので、従来のクラスターの耐障害性対処とはロジックは同じでも、処理アルゴリズムや実装は異なるものが必要になるだろう。いまのところはあまり冴えたやり方はない感じだ。間違いなく今後研究/開発の対象になる。どこも解決案を模索していて、「超高速ZK」とかコレじゃない感的なものが漂ったりしているのが目撃されています。正直、今までの分散合意とはちょっと異なる側面、例えば一種のone-side synchronization的な解決法がいるのでは?と個人的には思っている。

二つ目はconsistencyの話になる。透過的に一つのDBに見えるということは一貫性が担保されているということだ。普通に考えればOLTPからOLAPへのデータ同期はsnapshot isolationになるが、OLAPがread onlyであれば、まずwrite skewの問題が発生しない。・・ので問題ないじゃんと言いたいところであるが、やっかいなread-only anomalyが発生する。ので、さてどうしたもんかという話。

個人的にはOLTPとOLAPでのデータ共有のアーキテクチャ一種のmulti-versionと見ることが可能であるので、MVCC系の解決案にヒントがあると思っている。もちろんナイーブなMVTOの実装よりもより工夫されたものが必要になる。例えば、SSNの実装の一部はHTAP には有効だろう。

・・・さて、こう言ったHTAPに対するAsakusaの位置付けは、OLTP系の更新バッチ処理とOLAP系でのバッチ処理の統合ということになる。業務的な例で言えば、継続的なデータ更新をOLTPで行いつつ、同時にOLAP的なレポートも作成するというような処理群の透過的な管理になる。

個人的にはHTAPについてAsakusaがどういう方式で関与していくのか?はちょっと現時点ではっきりしていない。実装的な話としてはOLTP的な介入の仕方の延長戦場にはあるとは思う。

が、気になるのはOLTPサイドとOLAPサイドのセマンティクスのあり方が今ひとつ見えていないということだ。明らかにOLTPとOLAPでは「同一のデータモデルに対して異なる実装アプローチ」が採用されるはずである。そうでなければ、効率が悪い。このようなレイヤーにまで、どうアプローチするのか?がポイントになる気がしている。

これはHTAPを利用した独自の「アプリケーションのあり方」が登場するのか?または旧来のアプリケーションの「寄せ集め」になるのか?という点にもつながる。いまのHTAPの想定上位は、「旧来のアプリケーションの「寄せ集め」」に見えるが、これでは済まないように思う。これらの立ち現れ方によりAsakusaの立ち位置や介入方式も変わるだろう。

いずれにしろ、OLTP/HTAPが使われる時期はもうすぐそこまできており、その時分には「リアルタイムなデータの更新と高速なデータ処理」が普通に使えるようになるだろうし、そのような基盤としてAsakusaは提供されるようになるだろう。

■とはいえ結局は同じ

・・・とはいえ、ユーザ・アプリから見ると「今までのバッチ処理が、なんかすごく高速になりました」というだけの話でしかないのかもしれない。普通の一般人から見れば「いや、なんかそれすごいの?いままでできてなかったの?」ということになる。

まぁ、一般の人が考えている以上に今のITは制約が多いのですよ・・・ま、そんな感じのところに使われるのがAsakusaの将来像かと。別に世の中を変えると、disruptiveだとか、画期的だとか、なんかすげーって仕組みではないでしょう。

ただし、従来の仕組みからみると、その「下回り」はほぼ別物といってよいものであり、従前とはまったく異なるアーキテクチャになっている。結果として、「上物」はそれほどドラスティックに変化はないが、使い方が劇的に変わるということになる。(NTのメンバならわかると思うがANでのシミュレーション利用なんかが好例) その「つなぎ」ってのがAskausaの役割になってくると思う。

個人的に本来の技術のイノベーションというものは、こういった「よくわからないがいつの間にかすごく変わっていた」というものであるべきだとは思っている。僕自身のユーザ企業の経験から言って、そんな画期的な超絶凄いウルトラハイパーなものはいらないから、「普通に普通のことができてほしいかな」と思うわけです。

そんな感じ