ryamadaの遺伝学・遺伝統計学メモ このページをアンテナに追加 RSSフィード

数学・コンピュータ関連の姉妹ブログ『ryamadaのコンピュータ・数学メモ』
京都大学大学院医学研究科ゲノム医学センター統計遺伝学分野のWiki
講義・スライド
医学生物学と数学とプログラミングの三重学習を狙う学習ツール
駆け足で読む○○シリーズ
ぱらぱらめくるシリーズ
カシオの計算機
オンライン整数列大辞典

2014-06-24 射影変換と複比保存とで考えること

[][][][]射影変換と複比保存とで考えること〜トンボ・モグラ・ゾウリムシの統計学とは〜

  • 2次元空間で2変量が常微分方程式で定められた変化を状態空間に作るとき、それを、x_1/x_2という写像し、単位時間ごとにその写像の座標を記録をするる、複比が保存されるという
  • 何かしらが保存されているとき、そのようなパターンを繰り返しインプットされると、そのパターンに意味を付与するようになるだろう、生物としては
  • 自然現象で、このような記録が提示されることが、少なくないとしたとき、そしてそれは少なくなさそうだが、「複比保存シグナル」を提示されると、「2変量常微分方程式」とはわからないなりに、「よくあるパターン」と感知することができるようになるだろう
  • (ヒトの)シグナル処理系はその程度には優秀な並列データ処理システムであるから
  • こう考えたときに、2つ(か3つ)気になることがある
  • (1) 「その複比保存」を感知する神経(なのだと思うけれど)のデータ処理構造はどうなっているのか。そしてそれと関係するが、「2変量」ではなくて、もっと複雑だったとき、「●●保存」を感知しているのか、もっと何か違う「何かの共通性」に反応することができるようになっているのか。そもそも「共通性」は数学的に(数学という意味で、一般化したレベルで)表現できる何物か、なのだろうか、ということも気になるところ
  • (2) 「視覚」はヒトにとって非常に大きな情報処理システムなので、「視覚情報処理系」が「幅を利かせている」のだが、それが「線形・直線」などの特殊性を(必要以上に・真実以上に)推し進めているのではないか、ということ。「視覚情報処理系」が「線形・直線」を扱う、というのは、(ほぼ)等間隔に並んだ光センサーとその背後に潜む、差分・差分の差分・線形変換をする神経構造とともに扱うことを言っていて、ヒトの視覚は、3次元空間の直進的物理存在であるところの光を感知しつつ、2次元網膜に写像することを前提にしている。これらが、すべて「線形・直線」の優位性を作っている(らしい)。そのうえで、それが1次線形関係を気にすること、線形代数を気にさせる温床を作り、さらに、線形代数処理の効率化をもたらし、それがさらにデータ解析の世界で「直線・線形」の優位をもたらしているという、「悪循環」を作っているのではないか、ということ。それと一線を画するのが、聴覚系のスペクトル分解なのではないかと思うけれども、データマイニングでは、「聴覚系」は旗色が(悪くはないが)薄い
  • (3) 逆問題的な意味ではどうか。「ルール」があって現象が起きている。それを「感知する」ときには、射影するとか、そんな感じで情報が減じる。しかしながら、十分な量のデータレコードが得られれば、多少の乱雑項があっても、「ルール」を見出せる、というのが、「統計学・データマイニング」なのだけれど、『本当に』情報が十分な密度・件数で与えられれば、「逆問題」も解けてしまうのだろうか…。ここで言うところの「解ける」というのは、「正解」をすべて明らかにすることなのか、「ここまで言える、と言う程度、曖昧なルール」にすぎないのか、その「ルール」が曖昧とはいえ、それよりも「ちゃんとしたルール」が知りえないのであれば、「不満を感じることさえない」のではないかと言う意味で、「(不完全であると認識しえないという意味で)やはりちゃんとしているルール」であって、それがわかるのではないか
  • というような…
  • こんなことを考えると、データマイニングって、もっと圧倒的に自由なのではないかと。たとえば、複眼生物の統計学、とか、モグラ・深海魚の統計学、とか、ゾウリムシの統計学とか