Hatena::ブログ(Diary)

sileの日記

2012-08-26

マルチプロセスで使用可能なロックフリーキュー

タイトルの通り、マルチプロセスで使用可能なロックフリーのFIFOキューを実装したので、その簡単な紹介。

作成物

github: ipc-msgque (0.0.4)

  • ロックフリーなFIFOキュー
    • 再入可能 かつ SIGKILLに対して安全*1
  • C++
  • 共有メモリ(mmap)を使用
  • マルチプロセス(and マルチスレッド)間の通信に使用可能
  • gcc(ver4.1以上)*2 かつ POSIX準拠環境*3でのみ使用可能

単機能な割に、内部では「まず(割合)汎用的な可変長ブロックメモリアロケータを作って、その上に固定長ブロックアロケータ、さらにその上にFIFOキューを実装」と地味に凝ったことをしている。

使用例

fork()と併用した例。

/**
 * 親子プロセスで共有するFIFOキューを作成し、子から親へメッセージを送信するサンプルプログラム
 * 
 * ファイル名: msgque-sample.cc
 * コンパイル: g++ -o msgque-sample msgque-sample.cc
 */
#include <imque/queue.hh>  // インクルードパスを通しておく

#include <unistd.h>    // fork, getpid
#include <sys/types.h>
#include <stdio.h>     // sprintf
#include <string.h>    // strlen
#include <iostream>
#include <string>

#define CHILD_COUNT 10        // 子プロセスの数
#define QUEUE_ENTRY_COUNT 32  // キューの最大要素数
#define SHM_SIZE 4096         // キューが使用可能な共有メモリのバイト数

int main(int argc, char** argv) {
  // 要素数と共有メモリサイズを指定してキューを作成
  imque::Queue que(QUEUE_ENTRY_COUNT, SHM_SIZE);  
  if(! que) {
    return 1;
  } 

  for(int i=0; i < CHILD_COUNT; i++) {
    if(fork() == 0) {
      // 子プロセスの処理
      char buf[1024]; 
      sprintf(buf, "Hello: %d", getpid());

      // enqueue
      que.enq(buf, strlen(buf));
      return 0;
    }
  }

  // 親プロセスの処理
  for(int i=0; i < CHILD_COUNT; i++) {
    std::string buf;

    // dequeue
    while(que.deq(buf) == false);  // キューが空の間はビジーループ
    std::cout << "[receive] " << buf << std::endl;
  }

  return 0;
}

実行結果:

$ ./msgque-sample 
[receive] Hello: 12736
[receive] Hello: 12737
[receive] Hello: 12738
[receive] Hello: 12740
[receive] Hello: 12739
[receive] Hello: 12742
[receive] Hello: 12744
[receive] Hello: 12743
[receive] Hello: 12745
[receive] Hello: 12741

気が向けば、内部で使用しているメモリアロケータのコードなども載せていくかもしれない。

*1:ただし、メモリを確保してから解放するまでの間にSIGKILL等でプロセスがダウンした場合は、その分のメモリはリークする

*2:__sync_bool_compare_and_swap 等の各種アトミック関数を使用しているため。

*3:共有メモリの仕組みとしてmmapを使用しているため。

2012-08-11

ソート済みのリストに対する破壊的マージソートの改良

以前に載せたマージソート(をベースとしたもの)をSBCL(1.0.58)にコミットしてくれたPaul Khuongさんが、こんな記事を書いていて、なるほどなー、と思ったので、表題に関係する部分を参考にさせて貰って変更前後での比較を行ったメモ。

オリジナルのマージソート

まず、SBCL(1.0.58)のリストに対する破壊的マージソートの実装*1:

;; 二つのソート済みリストのマージ関数
(declaim (inline merge-lists*))
(defun merge-lists* (head list1 list2 test key &aux (tail head))
  (declare (type cons head list1 list2)
           (type function test key)
           (optimize speed))
  (macrolet ((merge-one (l1 l2)
               `(progn
                  (setf (cdr tail) ,l1
                        tail       ,l1)
                  (let ((rest (cdr ,l1)))
                    (cond (rest
                           (setf ,l1 rest))
                          (t
                           (setf (cdr ,l1) ,l2)
                           (return (cdr head))))))))
    (loop
     (if (funcall test (funcall key (car list2))  ; this way, equivalent
                       (funcall key (car list1))) ; values are first popped
         (merge-one list2 list1)                  ; from list1
         (merge-one list1 list2)))))

;; 実行
(merge-lists* '(:head) '(1 3 5) '(2 4 6) #'< #'identity))
=> (1 2 3 4 5 6)
;; リストのマージソート関数
(declaim (inline stable-sort-list))
(defun stable-sort-list (list test key &aux (head (cons :head list)))
  (declare (type list list)
           (type function test key)
           (dynamic-extent head))
  (labels ((recur (list size)
             (declare (optimize speed)
                      (type cons list)
                      (type (and fixnum unsigned-byte) size))
             (if (= 1 size)
                 (values list (shiftf (cdr list) nil))
                 (let ((half (ash size -1)))
                   (multiple-value-bind (list1 rest)
                       (recur list half)
                     (multiple-value-bind (list2 rest)
                         (recur rest (- size half))
                       (values (merge-lists* head list1 list2 test key)
                               rest)))))))
    (when list
      (values (recur list (length list))))))

;; 実行
(stable-sort-list '(8 73 2 40 0 3) #'< #'identity)
=> (0 2 3 8 40 73)

何種類かデータを用意して実行時間を計測:

;;; 計測用データ
;; 1] 400万要素のソート済みリスト
(defparameter *sorted-list* (loop FOR i FROM 0 BELOW 4000000 COLLECT i))

;; 2] 400万要素の逆順ソート済みリスト
(defparameter *reverse-sorted-list* (reverse *sorted-list*))

;; 3] 400万要素のほぼソート済みリスト1  ※ 千要素に一つがランダムな値
(defparameter *nearly-sorted-list1* (loop FOR i FROM 0 BELOW 4000000
                                         COLLECT (if (zerop (random 1000))
                                                     (random 4000000)
                                                   i)))

;; 4] 400万要素のほぼソート済みリスト2  ※ 複数のソート済みリストが連結
(defparameter *nearly-sorted-list2* (loop REPEAT 4 APPEND (loop FOR i FROM 0 BELOW 1000000 COLLECT i)))

;; 5] 400万要素のランダムなリスト
(defparameter *random-list* (loop REPEAT 4000000 COLLECT (random most-positive-fixnum)))


;;; 計測用マクロ
(defmacro sort-time (sort-fn-name list)
  `(let ((list~ (copy-list ,list)))
     (declare (optimize (speed 3) (safety 0)))
     (time (progn (,sort-fn-name list~ #'< #'identity)
                  t))))


;;; 計測
;; 1] ソート済みリスト
(sort-time stable-sort-list *sorted-list*)
Evaluation took:
  0.254 seconds of real time  ; 0.254秒
  0.252017 seconds of total run time (0.248016 user, 0.004001 system)
  99.21% CPU
  508,247,464 processor cycles
  0 bytes consed
=> T

;; 2] 逆順ソート済みリスト
(sort-time stable-sort-list *reverse-sorted-list*)
Evaluation took:
  0.235 seconds of real time  ; 0.235秒
  0.232015 seconds of total run time (0.232015 user, 0.000000 system)
  98.72% CPU
  468,869,834 processor cycles
  0 bytes consed
=> T

;; 3] ほぼソート済みリスト1  ※ 千要素に一つがランダムな値
(sort-time stable-sort-list *nearly-sorted-list1*)
Evaluation took:
  0.348 seconds of real time  ; 0.348秒
  0.348023 seconds of total run time (0.344022 user, 0.004001 system)
  100.00% CPU
  694,968,622 processor cycles
  0 bytes consed
=> T

;; 4] ほぼソート済みリスト2  ※ 複数のソート済みリストが連結
(sort-time stable-sort-list *nearly-sorted-list2*)
Evaluation took:
  0.271 seconds of real time  ; 0.271秒
  0.272017 seconds of total run time (0.272017 user, 0.000000 system)
  100.37% CPU
  538,952,732 processor cycles
  0 bytes consed
=> T

;; 5] ランダムリスト
(sort-time stable-sort-list *random-list*)
Evaluation took:
  2.171 seconds of real time  ; 2.171秒
  2.168135 seconds of total run time (2.160135 user, 0.008000 system)
  99.86% CPU
  4,332,215,938 processor cycles
  0 bytes consed
=> T

ソート済みのリストに対する改良を加えたマージソート

変更後のマージソート関数: ※ 変更内容はコメントを参照

;; 改良版マージソート関数
;; - fast-merge-lists*関数が追加されたこと以外は、もともとの関数とほとんど同様
;; - fast-merge-lists*関数は要素の範囲が重複しない二つのリストをO(1)でマージ可能
(declaim (inline stable-sort-list2))
(defun stable-sort-list2 (list test key &aux (head (cons :head list)))
  (declare (type list list)
           (type function test key)
           (dynamic-extent head))
        
           ;; マージ対象の二つのリスト内の片方が、もう片方に完全に先行している場合は、
           ;; 各要素の比較などは省略して、末尾のcdrの更新のみを行う。
  (labels ((fast-merge-lists* (try-fast-merge? list1 tail1 list2 tail2 rest)
             (when try-fast-merge?
                      ;; list1がlist2に完全に先行: (list1 .. tail1) <= (list2 .. tail2)
               (cond ((not (funcall test (funcall key (car list2))
                                         (funcall key (car tail1))))
                      (setf (cdr tail1) list2)
                      (return-from fast-merge-lists* (values list1 tail2 rest)))

                      ;; list2がlist1に完全に先行: (list2 .. tail2) < (list1 .. tail1)
                     ((funcall test (funcall key (car tail2))
                                    (funcall key (car list1)))
                      (setf (cdr tail2) list1)
                      (return-from fast-merge-lists* (values list2 tail1 rest)))))
             
             ;; その他: 通常のマージ
             (values (merge-lists* head list1 list2 test key)
                     (if (null (cdr tail1))
                         tail1
                       tail2)
                     rest))
                  
            ;; トップダウンマージリスト関数: リストの末尾を管理するようになったのとfast-merge-lists*関数を使うようになったこと以外は変更なし            
            (recur (list size)
             (declare (optimize speed)
                      (type cons list)
                      (type (and fixnum unsigned-byte) size))
             (if (= 1 size)
                 (values list list (shiftf (cdr list) nil))
                 (let ((half (ash size -1)))
                   (multiple-value-bind (list1 tail1 rest)
                       (recur list half)
                     (multiple-value-bind (list2 tail2 rest)
                         (recur rest (- size half))
                       (fast-merge-lists* (>= size 8)  ; オーバヘッドを少なくするために、一定サイズ以上のリストに対してのみ適用を試みる
                                          list1 tail1 list2 tail2 rest)))))))
    (when list
      (values (recur list (length list))))))

;; 実行
(stable-sort-list2 '(8 73 2 40 0 3) #'< #'identity)
=> (0 2 3 8 40 73)

処理時間計測:

;; 1] ソート済みリスト
(sort-time stable-sort-list2 *sorted-list*)
Evaluation took:
  0.086 seconds of real time  ; 0.086秒  (変更前: 0.254秒)
  0.088005 seconds of total run time (0.088005 user, 0.000000 system)
  102.33% CPU
  171,845,432 processor cycles
  0 bytes consed
=> T

;; 2] 逆順ソート済みリスト
(sort-time stable-sort-list2 *reverse-sorted-list*)
Evaluation took:
  0.087 seconds of real time  ; 0.0.87秒  (変更前: 0.235秒)
  0.088006 seconds of total run time (0.088006 user, 0.000000 system)
  101.15% CPU
  173,196,084 processor cycles
  0 bytes consed
=> T

;; 3] ほぼソート済みリスト1  ※ 千要素に一つがランダムな値
(sort-time stable-sort-list2 *nearly-sorted-list1*)
Evaluation took:
  0.293 seconds of real time  ; 0.293秒  (変更前: 0.348秒)
  0.292019 seconds of total run time (0.292019 user, 0.000000 system)
  99.66% CPU
  585,393,530 processor cycles
  0 bytes consed
=> T

;; 4] ほぼソート済みリスト2  ※ 複数のソート済みリストが連結
(sort-time stable-sort-list2 *nearly-sorted-list2*)
Evaluation took:
  0.122 seconds of real time  ; 0.122秒  (変更前: 0.271秒)
  0.120007 seconds of total run time (0.116007 user, 0.004000 system)
  98.36% CPU
  242,403,024 processor cycles
  0 bytes consed
=> T

;; 5] ランダムリスト
(sort-time stable-sort-list2 *random-list*)
Evaluation took:
  2.193 seconds of real time  ; 2.193秒  (変更前: 2.171秒)
  2.192138 seconds of total run time (2.164136 user, 0.028002 system)
  99.95% CPU
  4,376,336,316 processor cycles
  0 bytes consed
=> T

完全にランダムなリストに対するソートは心なしか改良版の方が(ごく若干)遅くなっているように思うが、入力リストにソート済みの部分が多ければ多いほど、確実に改良版の方が速くなっている。

確かに、二つのリストをマージする場合、それぞれの領域が独立しているなら、片方の先頭要素ともう片方の末尾要素を比較するだけで、リスト全体を完全に順序づけ可能なんだけど、自分が実装方法を考えている時には、そのことに思い至らなかった。

なるほどなー。

*1sbcl-1.0.58/src/code/sort.lisp より引用

2012-08-04

Lock-Free Queue

compare-and-swap操作を用いたロックフリーなキューの実装。

SBCLでのみ動作*1

(defpackage lock-free-queue
  (:use :common-lisp)
  (:export queue
           make
           enq 
           deq
           empty-p 
           element-count       
           to-list))
(in-package :lock-free-queue)

;; compare-and-swap: 成功した場合はTを、失敗した場合はNILを返す
(defmacro compare-and-swap (place old new)
  `(eq (sb-ext:compare-and-swap ,place ,old ,new) ,old))

;; キュー構造体
(defstruct queue
  (head nil :type list) 
  (tail nil :type list))

;; リストへ変換/空判定/要素数取得
(defun to-list (que) (copy-seq (cdr (queue-head que))))
(defun empty-p (que) (endp (cdr (queue-head que))))
(defun element-count (que) (length (cdr (queue-head que))))

(defmethod print-object ((o queue) stream)
  (print-unreadable-object (o stream :type t)
    (format stream "~s ~s" :count (element-count o))))

;; キューを生成
(defun make (&optional initial-contents)
  (let ((contents (cons :initial-head initial-contents)))
    (make-queue :head contents
                :tail (last contents))))

;; キューの末尾に要素を追加する
;; => queue
(defun enq (x que)
  (loop WITH new-elem = (list x)
        FOR tail = (queue-tail que)
    DO
    (cond ((cdr tail)
           (compare-and-swap (queue-tail que) tail (cdr tail)))  ; tailの位置を調整
          ((compare-and-swap (cdr tail) nil new-elem)
           (return que)))))                                      ; 追加成功

;; キューの先頭から要素を取り出す
;; => (or (values 先頭要素 T)   ; キューに要素がある場合
;;        (values NIL NIL))     ; キューが空の場合
(defun deq (que)
  (let* ((head (queue-head que))
         (next (cdr head)))
    (cond ((null next)
           (values nil nil))       ; 空
          ((compare-and-swap (queue-head que) head next)
           (values (car next) t))  ; 取得成功
          (t
           (deq que)))))           ; 他スレッドと競合(リトライ)

実行例:

;; シングルスレッドでの例
(defparameter *que* (lock-free-queue:make))
=> *QUE*

(lock-free-queue:enq 1 *que*)
=> #<LOCK-FREE-QUEUE:QUEUE :COUNT 1>

(lock-free-queue:enq 2 *que*)
=> #<LOCK-FREE-QUEUE:QUEUE :COUNT 2>

(lock-free-queue:to-list *que*)
=> (1 2)

(lock-free-queue:deq *que*)
=> 1
   T

(lock-free-queue:deq *que*)
=> 2
   T

(lock-free-queue:deq *que*)
=> NIL
   NIL

;; マルチスレッドでの例
(let ((data (loop FOR i FROM 0 BELOW 10000 COLLECT i))
      (que (lock-free-queue:make))
      (thread-num 500))
  
  ;; enqueuers
  (loop REPEAT thread-num
        DO (sb-thread:make-thread 
            (lambda ()
              (dolist (e data)
                (lock-free-queue:enq e que)))))

  ;; dequeuer
  (list
   (length 
    (loop REPEAT (* thread-num (length data))
          COLLECT 
          (loop
           (multiple-value-bind (val ok?) (lock-free-queue:deq que)
             (when ok?
               (return val))))))
   que))
=> 5000000
   #<LOCK-FREE-QUEUE:QUEUE :COUNT 0>

*1sb-ext:compare-and-swapを置き換えれば他の処理系でも動作可能

2012-07-21

複数プロセスで共有しているmutexのロック中にSIGKILLを投げたらどうなるか

結論: デッドロックになってしまう


自動的にロックを解放してくれたりはしないみたい。

以下、試した内容のメモ書き。

環境

$ cat /proc/version
Linux version 3.0.0-23-generic (buildd@komainu) (gcc version 4.6.1 (Ubuntu/Linaro 4.6.1-9ubuntu3) ) #38-Ubuntu SMP Fri Jul 6 14:43:30 UTC 2012

テスト用ソースコード

共有mutexに対して、ロック => スリープ(10秒) => アンロック、を行う子プロセスを四個作成するプログラム

かなりテキトウ。

/**
 * フィル名: mutex-text.cc
 * コンパイル: g++ -o mutex-test mutex-test.cc
 */
#include <pthread.h>
#include <iostream>
#include <sys/types.h>
#include <sys/wait.h>
#include <sys/shm.h>
#include <assert.h>

// 共有メモリの管理クラス
class mem {
public:
  mem(int size) : ptr_(NULL) {
    int shmid = shmget(IPC_PRIVATE, sizeof(pthread_mutex_t), 0600);
    if(shmid == -1) { return; }
    
    ptr_ = shmat(shmid, NULL, 0);
    if(ptr_ == reinterpret_cast<void*>(-1)) {
      ptr_ = NULL;
    }
  }

  ~mem() {
    if(ptr_ != NULL) {
      shmdt(ptr_);
    }
  }

  operator bool() const { return ptr_ != NULL; }

  template <typename T>
  T* ptr() { return reinterpret_cast<T*>(ptr_); }
  
private:
  void* ptr_;
};

// 複数プロセスで共有可能なミューテックスクラス
class mutex_lock {
public:
  mutex_lock() : m_(sizeof(pthread_mutex_t)), valid_(false) {
    if(! m_) { return; }

    // プロセス間で共有可能にするためにPTHREAD_PROCESS_SHAREDを付与する
    pthread_mutexattr_t mattr;
    if(pthread_mutexattr_init(&mattr) != 0) { return; }
    if(pthread_mutexattr_setpshared(&mattr, PTHREAD_PROCESS_SHARED) != 0) { return; }
    
    // 共有領域のmutexオブジェクトを初期化
    if(pthread_mutex_init(m_.ptr<pthread_mutex_t>(), &mattr) != 0) { return; }
    
    pthread_mutexattr_destroy(&mattr);
    
    valid_ = true;
  }
  
  ~mutex_lock() {
    if(valid_) {
      pthread_mutex_destroy(m_.ptr<pthread_mutex_t>());
    }
  }
  operator bool () const { return valid_; } 

  // ロック
  void lock() {
    assert(pthread_mutex_lock(m_.ptr<pthread_mutex_t>()) == 0);
  }

  // アンロック
  void unlock() {
    assert(pthread_mutex_unlock(m_.ptr<pthread_mutex_t>()) == 0);
  }

private:
  mem m_;
  bool valid_;
};

// main関数
int main(int argc, char** argv) {
  mutex_lock mutex;
  if(! mutex) {
    return 1;
  }
  
  pid_t parent = getpid();
  for(int i=0; i < 4; i++) {
    // 子プロセスのforkと lock => sleep => unlock 処理
    // 子プロセスは四個作成
    if(fork() == 0) {
      std::cout << "[" << getpid() << "] before lock" << std::endl;
      mutex.lock();

      std::cout << "[" << getpid() << "] in lock" << std::endl;
      sleep(10);  // 適当な時間sleep

      mutex.unlock();
      std::cout << "[" << getpid() << "] after lock" << std::endl;
      break;
    }
  }

  if(parent == getpid()) {
    for(int i=0; i < 4; i++) {
      waitid(P_ALL, 0, NULL, WEXITED);
    }
  }

  return 0;
}

実行結果

普通に実行した場合:

$ ./mutex-test
[31413] before lock
[31412] before lock
[31412] in lock
[31415] before lock
[31414] before lock
[31412] after lock
[31413] in lock
[31413] after lock
[31415] in lock
[31415] after lock
[31414] in lock
[31414] after lock

途中で子プロセスにSIGKILLを投げた場合:

$ ./mutex-test 
[31443] before lock
[31443] in lock       # <- このプロセスにSIGKILLを投げる (kill -9 31443)
[31444] before lock
[31445] before lock
[31446] before lock
# 以後 31443 が獲得したロックが解放されることなく、デッドロックに陥る

とりあえず手元の環境では、このような挙動となった。

2012-07-04

エラトステネスの篩

loop*1を使って、エラトステネスの篩を実装してみたメモ。

以下、処理系にはSBCLのver1.0.54(x86-64bit)を使用。

;; 引数nまでの範囲の素数のシーケンス(ジェネレータ)を作成する
(declaim (inline make-prime-sequence))
(defun make-prime-sequence (n)
  (let ((arr (make-array (1+ n) :element-type 'bit :initial-element 1)))
    (flet ((prime? (i) (= (bit arr i) 1))       
           (not-prime! (i) (setf (bit arr i) 0))) 
      (declare (inline prime? not-prime!))

      (loop:each (lambda (i)
                   (when (prime? i)
                     (loop:each #'not-prime! (loop:from (* i 2) :to n :by i))))
                 (loop:from 2 :to (floor (sqrt n))))
    
      (loop:filter #'prime? (loop:from 2 :to n)))))

;;; 実行例
;; 100以下の素数
(loop:collect (make-prime-sequence 100))
=> (2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97)

;; 1001から1010番目の素数
(loop:collect (loop:take 10 (loop:drop 1000 (make-prime-sequence 10000000))))
=> (7927 7933 7937 7949 7951 7963 7993 8009 8011 8017)

通常のループ(loopマクロ)を使った場合との速度比較。

;; 比較用に素数の合計値を求める関数を用意
(defun prime-sum1 (n)
  (declare (fixnum n)
           (optimize (speed 3) (safety 0) (debug 0)))
  (loop:sum #'identity (make-prime-sequence n)))

;; 一億以下の素数の合計値
(time (prime-sum1 100000000))
Evaluation took:
  1.675 seconds of real time  ; 1.675秒
  1.676105 seconds of total run time (1.676105 user, 0.000000 system)
  100.06% CPU
  3,342,591,038 processor cycles
  12,500,032 bytes consed
=> 279209790387276
;; loopマクロ版
(defun prime-sum2 (n)
  (declare (fixnum n)
           (optimize (speed 3) (safety 0) (debug 0)))
  (let ((arr (make-array (1+ n) :element-type 'bit :initial-element 1)))
    (flet ((prime? (i) (= (bit arr i) 1))
           (not-prime! (i) (setf (bit arr i) 0)))
      (declare (inline prime? not-prime!))

      (loop FOR i fixnum FROM 2 TO (floor (sqrt n))
            WHEN (prime? i)
        DO
        (loop FOR j fixnum FROM (* i 2) TO n BY i
          DO
          (not-prime! j)))

      (loop WITH sum OF-TYPE (unsigned-byte 64)
            FOR i fixnum FROM 2 TO n
            WHEN (prime? i)
        DO (incf sum i)
        FINALLY (return sum)))))

;; 一億以下の素数の合計値
(time (prime-sum2 100000000))
Evaluation took:
  1.476 seconds of real time  ; 1.476秒
  1.472092 seconds of total run time (1.468092 user, 0.004000 system)
  99.73% CPU
  2,944,592,020 processor cycles
  12,500,032 bytes consed
=> 279209790387276