Hatena::ブログ(Diary)

A way of thinking

*注:筆者個人の思考過程です。意見には個人差があります。
不適切な表現等はご指摘頂ければ幸いです
まじめな内容のみをご覧になりたい方は,上部の検索ボックスに"[学]"と入れるといいかもしれません。


 | 

January 21(Mon), 2013

[][] を含むブックマーク

大分前に,東大でシンポがあったときに,著者割で購入した久保さんの本。サインも頂いときました。なかなか読まないのでアメリカに持ってきたのですが,やっと読み始めました。メモを適宜残していきたいと思います。読了前から言えることは,とにかくお薦めです。

f:id:yuichiwsk:20121023125710j:image:w200

読了:まとめ*1

やはり,久保さんが書かれただけあって,大変かゆいところに手が届く良い本だと思います。この本の前身である講義ノートにお世話になった派ですが,全部が全部新しいというわけではないにしても,買って損した気分はまったくしていません。ボク的には完全にお薦めですが,結局,「まともそうな統計解析は容易ではない:頭と時間を使わねばならない」ことが分かってテンションが下がる人がいるかもしれません。でもそういう意味でも,一度は通っておくべき道な気がします*2。久保さんらしい「ちょっと無責任っぽさ*3をにじませる脚注」があったり,ちょっと説明しすぎ,なところもあるような気もしますが,それはそれでいい気がします*4。色々書きましたが,お薦めです。回帰分析とかANOVAとか一通り伝統的な解析方法とその使いどころを学んだ後の方が,読み応えがあるかもしれません(あるいは,理解しやすいかもしれません)。余談ですが,AICのところやモデルの限界とかを考えると,結構不安定な基盤の上で研究を進めているなぁと思ったりもしました。


以下,個人的雑多なメモ。

  • AICがなぜ使えるか?の説明が大変わかりやすい。
    • あー,そういうことだったんですね,とある意味目から鱗でした。今更何をと言われそうですが,すみません。なんとなくのイメージはあったのですが,こんな感じまで理解はしてなかったです。ちょっと頭を使わないときつかったですが,でも理解できたはずです。
    • ネストの話あたりも,あーだからここで,AICはネストしたモデル間の比較にしか使えないとかっていうRipleyさんのコメントに対する返答があったりするんですね。繋がっておもしろかったです。
    • ちょっとわかりづらいのは,p86で「この説明変数xiは応答変数とまったく無関係な乱数なので,一定モデルのAICと比較すると,xモデルのAICは2ぐらい大きくなる,つまり「予測の良さ」が悪化するはずです」と書いておいて,p88で「この例題では説明変数xiが無意味なものだったので,統計モデルの複雑化によってAICが1増加しましたが,」と書いているところ。ボクの理解が正しければ,前者の予測は,変数に本質的な意味はない(はずな)のでAICの2×パラメータ数の部分からAICが2増えるだろうと予測しているだけど,実際は最大対数尤度に平均0.5のさらなるバイアスがかかるので,AICは1しか増えないということだと思う。だからなんだ?という気もするけど。この例を逆に考えると,AICの差の議論ってやはり難しいよなぁ。真のモデルじゃなくても,真のモデルとAICの差が1だったりするわけだし。AICの差が2未満は,本質的な違いではないとかっていうrule of thumbがあるけど,この例では当てはまってないわけで。
    • なんでAICは2がかかっているのか?この本か,別の本かなんかで関連する記述かなんかを見た気がするけど忘れた。
  • AICは予測の良さを基準とした規準。
  • 尤度比検定は常に片側検定(p106)
    • あまり考えたことなかったけど,これは確かにその通りですね。
  • "「等分散性の検定」はよく使われていますが,これは検定の誤用"
    • 等分散であるという帰無仮説を棄却できないことを根拠に,等分散性を仮定して統計解析することは,本質的には正しい展開ではないということだと思いますし理解できますが,実際は,結構微妙な問題だったりしないんですかね。。ただ,確かに脚注にあるように,モデル選択の枠組みでは,等分散の方が良いということができるのは確かですね*5
  • AICはパラメータ数は「最尤推定したパラメータ数」と意味するらしいので,(最尤推定していない)ランダム効果(ここではri)は含まれない(p160脚注)とのこと。
    • へーそうだったんですか,という感じ。自由度の問題?といい,ランダム効果で説明できる部分は多いのにパラメータ数に含めないっていうのは,勝手な推測ですがこのあたりが議論になっていそうですね。
  • ギブスサンプリングのFCDというのはよくわからなかったけど,収束判定,事前分布の分散の指定とリンク関数,出力結果の扱い方は「とりあえずWinBUGSを使った経験が少しある」ボクも勉強になりました(第9章)。

[][] を含むブックマーク

先週の火曜から,借りていたアパートを出てボスの家にお世話になっております*6。昨日ウィルとダイアナが休暇から帰ってきて,本格的に共同生活開始という感じ。といっても,ボクの部屋は地下にあるし*7,好きにしていいよー,というのでまぁそんなにきにする必要はないかもしれませんが。。まぁでも緊張するものです。

今日はマーチンルーサーキングの日で,オバマがラジオでスピーチしていました。ボスの家には,テレビ自体はあるけどテレビが見れないし,電子レンジもない。ダイアナの好みのようだけど,プラスティック容器は一切無く,すべて陶器かガラス。ハンドリングしにくさを置いておけば,それはそれで素敵だと思う。ボクがアパートからもってきた容器はほとんどプラスティックだけど--;。

まぁそんな感じです。もう大体この滞在でできそうなことは終わったし*8,もう帰ってもいいっちゃいいのですが,せっかくなので予定日までもうしばらく居ようと思います。英語英語。

*1:10と11章はまだ使う機会はなさそうなので,ぱらぱらっとで終わらす。

*2:ボク個人的には,最新ではなくても,データを眺めて手法をできるだけ理解して色々試行錯誤して「ましな」解析ができればええなぁと思っている派です。2013/1/21現在。

*3:各人が自力でがんばれよ感

*4:ボク自身,全部理解できている自信はないので,ここの脚注意味わからんなぁというところがあったくらいです

*5:これもまぁ,微妙な結果になりうるとは思いますが。。しかし,どうやってモデリングするんだろう。ちょっとぱっと思いつかない。ベイズ

*6:あと一ヶ月で帰るので,その期間ではアパートは貸せない&ちょうどつぎの半期が始まるところなので,他の人に貸したいというジョイスの意向。−まぁ至って真っ当です

*7:関係ないけど,リスク解析なんとかっていう訳本に,地下ではラドンの曝露が…って計算問題があった記憶がある

*8:時間的に次の新しいことはできないし

 |