選択公理

(サイエンス)
せんたくこうり

 Axiom of choice
 空でない複数の集合群があるとする。それぞれの集合から1つずつ元を選択し(選択関数を作ることができ)、新しい集合をつくることができること。


 直感的イメージとしては、
 複数の箱(集合)の中に自然数の番号を重なることがないように書いた玉(元)を適当に振り分けて入れるものとする。(空箱は作ってはいけない)
 選択公理では、このそれぞれの箱から例えば「一番大きい数字を書いた玉」(選択関数)と指定して1つの箱から1つずつ玉を選択ことができ、それを使って新しい箱(新しい集合)を作ることができることを理由なしに認めることである。
 この中で証明しきれない部分が『「一番大きい数字を書いた玉」(選択関数)を選ぶことができる』という部分。
 もちろんこのような例で説明すると成り立って当然(実は有限集合でやっているのでこれは選択公理は必要ない)これを無限集合に対して行う事を保証しているのが選択公理です。


 選択公理を使って整列可能定理と言う驚くべき定理が成り立つこと(ツェルメロがこの証明を行った際、当初暗黙のうちにつかった)、およびバナッハ・タルスキーのパラドクス(Banach-Tarski paradox)が不可避となうることで選択公理に懐疑的な数学者も現れるが、これを認めないとなると、数学の多くの部分を失ってしまう。
 ということで公理系ZFと、選択公理をこの公理系に加えたZFCを区別して数学の体系を考える学問もある。

 

このタグの解説についてこの解説文は、すでに終了したサービス「はてなキーワード」内で有志のユーザーが作成・編集した内容に基づいています。その正確性や網羅性をはてなが保証するものではありません。問題のある記述を発見した場合には、お問い合わせフォームよりご連絡ください。

ネットで話題

もっと見る

関連ブログ