数学の一分野。英語でHarmonic Analysis。
様々な波の美しい組合わせは調和を起こす。逆に、調和解析は、ピタゴラスも研究した数学の源の一つである調和を構成する音の研究からその名前を取る。調和解析とほぼ同義であるフーリエ解析を使うと、一つの調和をサイン関数の重ね合わせで表現出来る。なを、バイオリンなどで一つの音を発した際に含まれる倍音成分の波長の比を次々と足していくと、もっとも重要な発散級数である調和級数が得られる。
数学の半分を書き換えたと言われるGelfandを眼前にしたAtiyahをして、20世紀数学の根幹であり非線型フーリエ解析がそれに取って変わると言わせる学問である。調和解析の見渡す分野は広大で表現論、代数幾何、整数論、解析はもちろん特にフーリエ変換を通じて線形の微分方程式を代数的に解く道具として重要である。
まさに今、世界で最も注目されている若き天才数学者であるUCLAのTerence Tao*1等により、掛谷問題や微分方程式の解の安定性などの研究を通して、最も活発に研究がされている数学の分野である。
リスト::数学関連
*1:らんま1/2ファン?