Hatena::ブログ(Diary)

hiroyukikojimaの日記

2018-07-29

会話型数学書の成功例

16:16

 今回は、小山信也さんの数学リーマン教授にインタビューする』青土社を紹介しよう。

この本は、高度な数学啓蒙書であり、かつ、近現代の数学史の書であり、かつ、数学思想の指南の書でもある。この本の良い点は、次の三点に尽きる。

1. 会話型で書かれた数学書として、出色の出来となっている。

2.ゼータ関数をとりまく数論のみごとな総覧的紹介となっている。

3. 数学の思想的な発展がどのような動機と経緯で成されるかが、よくわかる。

以下、もう少し詳しく説明しよう。

 実は、ぼくは、会話型の数学啓蒙書や受験参考書のほとんどを評価していない。会話文は簡単、と多くの数学者数学教育者が思っているふしがあるが、それは単なる錯覚だと思う。会話文で最も大事なのは、「キャラクターの分離」だ。会話の登場人物は、人格も知識も性格も異なっていなければ意味がない。しかし、多くの会話型の啓蒙書・参考書では、どの登場人物も著者そのものであり、自分の独白を切り分けて提示しているにすぎない。全く書き分けがなされていない。これでは、読者は普通の文章を読むより苦痛を強いられる。本当は一つの流れを持った文章をぶつ切り状態で読まされるからだ。

 会話を書くのは、特殊な訓練とスキルが必要だ。だからこそ、シナリオ作家や劇作家という職業が成立するのである。シナリオは、通常の説明文とも、そして小説とも異なる技法で作られる。

そういう点から見て、本書は、出色の出来となっている。

本書は、19世紀数学者リーマンに、著者の小山さんがインタビューする形式で書かれているが、みごとに「分離性」が成し遂げられている。この成功は、ぼくの憶測ではあるが、構成を黒川陽子さんという劇作家の方が行っているからではないかと思う。ちなみに黒川陽子さんは、数学者黒川信重さんのお嬢さんであり、かつ、プロの劇作家だ。劇作家協会新人賞を受賞している優れたシナリオ作家さんなのである。そういうプロが会話を構成しているので、「キャラクターの分離」が実現しているのだと思う。数学の内容がわからなくても、「数学演劇」として読むだけで、十分に楽しむことができるだろう。

 次に本書では、会話型で書かれているため、通常の数学書とは全く異なる知識供給が可能になっている。インタビューや講演会を文章で読むのに近い感覚を得ることができる。しかも、リーマンという天才数学者のインタビューである。(もちろん、フィクションだけどね)。

 さすが、小山信也さん。リーマンの発言は、当時の数学史に忠実だ。だから、19世紀末の数論の歴史を子細に知ることができる。また、リーマンの理解を通して、その後の、20世紀・21世紀の数論の展開が開示されるので、「リーマンなら、どう感じるのだろう」というところが、(フィクションではあるものの)、瑞々しく伝わってくる。そういう意味で、異色の数学書だ。

 最後に、素数ゼータ関数についての数論の本として、本書にどんな貢献があるかを書きとめておこう。

ほとんどの数学書は、定義と定理を紹介しようとするため、定理たちの論理的な連関は提示されるけど、思想的な連関は与えられない。思想的連関とは、「数学の新しい道具が、以前の道具からどのような連関性の下で生み出されているか」という意味で使っている。本書では、その思想的連関が具に語られているのだ。

数学者が新しいアイテムを生み出すとき、基本的には、これまであったアイテムとの「類似物」を創案するのだろう。でも、一度創造がうまくいってしまう(証明に成功する)と、そういう「何を妄想してやったか」はないがしろにされてしまう。「証明されて正しいこと」が優先されるからだ。

でも、数学ファンとして楽しむ(ぼくのような)人々は、「どうして、そんなこと考えたの?」ということを知りたい。「何と何はどういう風につながっているか」ということをわかりたい。そして、厳密な証明なんて、ある意味どうでもいい。別に数学で飯を食うわけではないからだ。

本書は、リーマンとの対談という形式のため、そのような「類似物の構成」ということが赤裸々に説明されていて、すばらしい。

例えば、次のような歴史的経緯が説明される。

[ガウスの平方剰余相互法則]→[アルティン一般相互法則]→[イデール類群]→[アルティンL関数のヘッケL関数による表示]→[保型形式のL関数]→[ラングランズ予想]→[フェルマーの最終定理解決]

しかも、これらの道筋は、ヒルベルトの提示した第9問題と第12問題の統合である、という新鮮なことも説明されている(少なくとも、ぼくは知らなかった)。このように語られると、数学者問題意識、つまり、一般化アプローチがどんなものであるかを実感でき、それが歴史的難問「フェルマーの最終定理」の解決に結びついた、という感激を得ることができる。

もう一つ例を挙げるなら、素数概念の一般化」という観点だ。

ゼータ関数は本当にたくさんの種類があるのだけど、基本的に「素数の類似物」が関与する。大元のリーマンゼータ関数は、オイラー積と呼ばれる全素数の積形式で表されるのだが、他の多くのゼータ関数も、素数代替物を使って構成されるのである。それが本書で、うまく端的に説明されていて、「そういうことなのか」と腑に落ちる。おおざっぱに挙げると、

リーマンゼータ関数→全素数によるオイラー積で構成

環Aのゼータ関数→環Aの極大イデアルによるオイラー積で構成→環Aを整数環にすれば極大イデアル素数と対応

代数多様体(方程式のグラフ)のゼータ関数→座標環の極大イデアルによるオイラー積で構成→代数多様体の点が座標環の素イデアルに対応

リーマン面Mのセルバーグ・ゼータ関数リーマン面Mの素測地線のオイラー積→リーマン面Mの素測地線は素数代替

という感じ。これらによって、素数代替物を見つければ、ゼータ関数を作り出せることが直感できる。そればかりではなく、セルバーグ・ゼータ関数ではリーマン予想が証明できるので、セルバーグ・ゼータ関数リーマンゼータ関数となる多様体Mを発見すればリーマン予想解決できるだろう、という戦略(夢)も提示されていて、ぐっとくる。

 本書は、まともにすべてを理解しようとすると、障壁が高い。しかし、会話型の啓蒙書なのだから、そもそもそんな読み方をすべきではない。あくまで本書は、19世紀数学者と21世紀の数学者の(仮想)対談として、ふむふむと頷きながら読むのがよい。そうすれば、壮大な数学の世界を垣間見ることができる。

本書でゼータ関数に興味を持って、詳しく知りたくなった人は、黒川信重さんの著作(例えば、オイラーはやっぱりとんでもなくスゴイとわかる本 - hiroyukikojimaの日記とか数学の青写真をステキに語った本 - hiroyukikojimaの日記とかもはや思想書と呼ぶべき数学書 - hiroyukikojimaの日記とか)や、小山信也さんの著作(例えば、将棋の実況解説のような数学書 - hiroyukikojimaの日記とか)を読んだらいいのだが、これらに直接アタックするのは苦しいと思うので、その前にぼくの著作『世界は素数でできてる』角川新書を読んでおくと良いだろう(笑)。

2018-06-22

オイラーはやっぱりとんでもなくスゴイとわかる本

19:07

 今回は、黒川信重さんの新作を紹介しよう。オイラーリーマンゼータ関数日本評論社だ。「ゼータの現在」というシリーズ本の2冊目の本だ。

この本はゼータ関数についての解説書で、もちろん数学書としてはけっこう高度な内容だ。しかし、読み方を工夫する、つまり、注目する視点を変えると、非常に面白く、かつ、深い感慨が得られる本なのだ。視点は、少なくとも次の二点がある。

(1) オイラーゼータ関数に関する業績を、オイラーの年齢順に並べてある点

(2) 最新の数論の方法論である絶対ゼータ関数(F1理論)をオイラーが既に議論していたことを明らかにしている点

どちらにも共通しているのは、オイラーはやっぱりとんでもなくスゴイ、ってことだ。ちなみに、ぼくがこのところずっとはまっているアニメ化物語」シリーズ(例えば、確率・統計は、マーケティングに使えるらしいぞ - hiroyukikojimaの日記にエントリーしている)には、老倉育(おいくらそだち)という少女キャラが出てくるが、このキャラは数学好きが特徴で、明らかにオイラーを彷彿とさせるのである。オイラーアニメで少女に憑依するぐらいスゴイのだ(笑)。まあ、本書を読む前に、老倉育ファンのぼくが書いたゼータ関数素数入門書『世界は素数でできている』角川新書を読んでおくことを強くお勧めする。

 視点(1)で書かれた本は、あるようであんまりないんじゃないかと思う。年齢順に、オイラーの発見を見ていくと、オイラーの天才ぶりが浮き立つ。まず、26歳で、オイラー定数と呼ばれるγ=0.577・・・を発見している。これは、1の逆数、2の逆数、・・・、nの逆数の和から、log nを引いた値のnを無限大に飛ばしたときの極限だ。さらに、γをゼータ関数の値の級数で表すことも証明している。オイラー数がゼータ関数で表現できること、そして、それを若いオイラーが発見していたことは全く知らなかったので、これには思わずうなってしまった。

次に、28歳のときに、例の平方数の逆数和であるζ(2)の値が、(円周率の2乗)/6であることを求めている。さらに、正の偶数のときのゼータの値、ζ(4)、ζ(6)、ζ(8)、・・・も求めている。すべて円周率が現れる。

さらに、30歳のとき、ゼータ関数に関するオイラー積を発見している。これは、ゼータ関数の値が全素数で表現できる、という公式だ。その上で、素数の逆数和が無限大であることも証明している。

そして、32歳と42歳のときに、関数等式を見つけている。関数等式とは、ゼータ関数の値が1/2に関してある種の対称性を持っている、ということを示す公式である。

次なる年齢は、61歳まで20年ほどジャンプする。この年のオイラーは、ゼータ関数積分で表示する式を発見している。リーマンはこの式を土台にして、解析接続という方法を開発した。解析接続とは、(sの実部)>1でしか通常の意味では収束しないゼータ関数を全複素数に拡張する重要な方法論だ。

この次は、65歳である。ここでオイラーは、s=3におけるゼータの値ζ(3)を表現する式を求めている。ζ(2)を求めてから、この値にアプローチするまで37年の経過しているのは感慨深い。ζ(3)を表現する式は非常に面白い式(log(sinx)なんて出て来る)なので、是非とも本書で鑑賞してみてほしい。

そのあと、3年後の68歳で、オイラーは、交代和形式のゼータ関数(L関数)を研究している。

このように時系列(年齢系列)で見ると、オイラーが、非常に執念深く、繰り返しゼータ関数にアタックしていることがわかり感動する。そればかりではなく、70歳近くなったオイラーがまだ精力的にゼータ関数に挑んでいる姿には勇気がもらえる。ぼくも今年、還暦を迎えるが、まだまだ研究にアタックすべきなんだ、と気持ちを新たにした。

 しかし、本書の真の驚きは、(2)の点だ。

本書では、黒川さんがリーマン予想解決するために提案した絶対ゼータ関数(F1理論)を第2章で概説し、引き続く第3章で、オイラーが既にこの絶対ゼータ関数を研究していた、という驚異的な事実を打ち出している。

絶対ゼータ関数をここで詳しく述べるのはぼくの能力を超えるので、本書を読んでほしい。あるいは、ぼくと黒川さんの共著『21世紀の新しい数学技術評論社を先に読むと良いだろう。この共著は、基本的に対談本なので、他の解説書よりは読みやすいと思う。

本書によれば、絶対ゼータ関数は絶対保型形式から定義する、という方向が定着したそうだ。絶対保型形式f(x)とは、xを1/xに置き換えたf(1/x)がほとんど元と変わらないような関数をいう。このf(x)を使ってある種の積分操作を行って関数Z_f(w, s)を作り、これをwで偏微分してexpすると、絶対ゼータ関数ζ_f(s)が得られるそうである。さらに、コンヌとコンサニは、この絶対ゼータ関数が、もっと簡単な積分計算で得られることを示している。f(x)をlogxで割って、xのべき乗を書けて積分し、expする計算である。実はこの計算をオイラーは既に見つけていた、というのだ。

 オイラーは、67歳〜69歳にいくつかの論文を書き、絶対ゼータ関数に肉薄している。オイラーが67歳に発見した積分結果は、先ほどのコンヌとコンサニの絶対ゼータ関数に含まれるものなのである。さらに、68歳で証明した結果はとても面白い。最初のほうで説明したオイラー定数γの積分表示を手に入れている。1/(1−x)と1/logxの和を0から1まで積分するとγになる、というのである。この証明での計算を黒川さんは「絶対ゼータ関数の計算である」と断言している。黒川さんがこの見方を提示するまでは、誰もが「単なる定積分の計算」と眺めていた、と黒川さんは言う。この発見を黒川さんが研究集会で述べたとき、コンヌも、カルティエも、ラフォルグもみんなが驚いた、とのことだ。

 このように、本書は、いくつもの驚きと感動をもらえる本になっている。数学を理解する力がそんなになくとも、数式を見るのが鬱陶しくても、この本は飛ばし飛ばし読んでいくだけで、わくわくしてきて、どきどきしてきて、興奮できること請け合いだ。

2018-06-02

阪大のシンポジウムで登壇します

17:04

 先日、土木学会シンポジウムに登壇し、基調講演を行った。今度は、阪大社研主催のシンポジウムで登壇するので、宣伝したい。以下。

日時: 2018年7月2日(月)午後7時〜8時30分 (開場/受付開始 午後6時から)

場所: 大阪大学中之島センター10階 佐治敬三メモリアルホール

 

講演 [30分]:「消費低迷と日本経済

小野 善康 大阪大学社会経済研究所特任教授

 

討論 [60分]:「日本経済をどう見るか」

原 真人 朝日新聞社編集委員

小島 寛之 帝京大学経済学部経済学科教授

小野 善康 大阪大学社会経済研究所特任教授

詳しい内容は、下記のホームページから。

http://www.osaka-u.ac.jp/ja/news/seminar/2018/07/7786

小野さんと、朝日新聞の原さんと、ぼくという取り合わせなので、何が主張されることかは自ずとわかるだろう。そう、きっと、

リフレ政策は失敗したのだ!

という主張が展開されることになるんだろう。(まだ、打ち合わせしてないので、実際はどんな話題が展開されるのかはわからない)。関西方面のかた、是非とも、ご参集くだされ。

さて、土木学会に参加した感想を簡単に述べておこう。

土木学会の側から、京都大学藤井聡教授と神戸大学小池敦教授が宇沢先生の理論について報告を行った。どちらも、宇沢先生の社会的共通資本の理論について、よく理解されておられたが、とりわけ、小池教授の研究報告は興味深いものだった。sympathyとempathyとの違いに注目したり、コストvsベネフィットに対するカルドア・ヒックス基準を持ち出し、新しい視点、宇沢先生的な解釈を導入したり、非常に斬新にしてディープな研究だった。

土木学会は、『自動車社会的費用』を書いた宇沢先生にとって、敵地そのものかと思っていたが、驚くべきことに、そこに先生の理論が芽吹いていたのだ。むしろ、経済学会よりも宇沢先生の理論が定着していると言っても過言ではないのは皮肉なことだった。

 もう一つ驚いたのは、小野善康さんの経済政策がかなり議論の俎上に載ったことだった。土木学会は、まあ、公共事業と縁が深いから当然と言えば当然だけど、小野さんの理論がじわじわと普及していることは嬉しいことである。

というわけで、次回は7月に、小野さんが主役のシンポジウムがあるのでよろしくね、ということで。

2018-05-12

映画『ペンタゴン・ペーパーズ』を観てきますた!

17:52

 ゴールデン・ウィークに、観たかった映画『ペンタゴン・ペーパーズ』を家族で観てきた。これは、スピルバーグが監督したハリウッド映画で、1971年アメリカに起きた大事件を描いたものだ。それは、ベトナム戦争の真実について、その秘匿されている情報を、ある男がコピーして持ち出して、ニューヨーク・タイムズワシントン・ポストにリークした。それが報道されたことで、国民がベトナム戦争の真実を知るところとなり、世論が大きく変わって、戦争終結に結びついた、その顛末を描いた映画だ。

 観たかった理由は二つある。

第一は、宇沢先生に市民講座で教わっていた頃、ベトナム戦争とその当時のアメリカの雰囲気を教わったことがあり、非常に興味を持っていたこと。第二は、書類をコピーして持ち出しリークした人が、経済学者ダニエル・エルスバーグという人で、ぼくの研究の始祖にあたる人だから、ということ。以下、順を追って説明する。

 その前に、前回(宇沢先生の理論のシンポジウムを土木学会が行います! - hiroyukikojimaの日記)にも宣伝した、宇沢先生の理論に関する土木学会シンポジウム(ぼくも登壇する)について、もう一度宣伝をしておきたい。残席が僅かになっているので、もしいらっしゃるのなら、早めにお申し込みを。

シンポジウム宇沢弘文社会的共通資本再考する」

日時:平成30年5月28日(月) 13:00−17:00

場所:土木学会講堂(新宿区四谷1丁目外濠公園内)

定員:120名

参加費:無料

案内のHPは↓。申し込みもこのHPからできる。

シンポジウム|土木計画学研究委員会

 さて、この映画の主役は三人いる。第一は、国防長官ロバート・マクナマラ、第二は、リークする経済学者ダニエル・エルスバーグ、第三は、ワシントンポスト経営者キャサリン・グラハムだ。

 ロバート・マクナマラについては、宇沢先生に相当詳しく、その人となりを聞いた。それは宇沢先生の著作にも詳しく書かれている(例えば、宇沢弘文傑作論文全ファイル』東洋経済新報社)。少し引用しよう。

ケネディジョンソン大統領のもとでヴェトナム戦争計画し、実行していったこれらの知的エリートとでも言うべき人々が、じつはいかに知性の乏しい、人間的に貧しい人々であったか、ということをハルバーシタムは繰り返し述べている。とくに、ロバート・マクナマラ国防長官にかんする叙述は詳細にわたっている。彼が一見すぐれた能力をもつようにみえながら、ヴェトナムにおける歴史的な流れを理解することができず、軍事的介入をエスカレートしていった過程を見事に描き出しているが、最後に「要するに、彼は馬鹿であった(After all, he was a fool.)という言葉で結んでいるのは、きわめて印象的である。(中略)。

 とくに多くの経済学者が、ロバート・マクナマラ氏が長官であった国防省に入って、戦争計画に直接関与することになり、新古典派経済学の考え方にもとづいてさまざまな政策が立案され、実行に移されていった。マクナマラ氏はもともとハーバード大学経営学を講じた学者でもあったが、その効率主義にもとづく考え方は、新古典派経済学の理論的展開とも調和するものであった。ヴェトナム解放戦線の兵士を一人殺すのにどれだけの費用が必要となるか、という、いわゆる「キル・レシオ」(殺戮比率)という概念が導入され、「キル・レシオ」を最小化するためにどのような資源配分のパターンを国防政策のなかでとったらよいか、という議論が堂々と行われた。

 その結果、もっとも多いときには年間600億ドルという巨額な資金ヴェトナム戦争の直接軍事費として支出されるという状況のもとでも、増税をおこなうことなく、またインフレーションをお惹き起こすこともなく、ヴェトナム戦争を遂行し、国土を破壊し、人民を殺戮することを効率的におこなってきた、というのが、マクナマラ長官が上院外交委員会の証言でつよく主張したことであった。

この文章には、宇沢先生の怒りと、新古典派経済学への失望が読み取れる。宇沢先生が新古典派的な手法に愛想尽かしたのは、このあたりに原因があるのではないか、と憶測している。

 映画に出て来るマクナマラは、見た目には非常に常識人に見える。しかし、そこはかとない狂気が秘められているように見える。つまり、ある種のサイコパスとして描かれていた。

 一方、ダニエル・エルスバーグは、この文章にあるように、マクナマラの配下になりながら、マクナマラの人となりに大きく反感を持ち、ベトナム戦争の現実が秘匿されている事実に怒りと絶望を持ち、機密書類の持ち出しという犯罪を実行した。つまり、アメリカ経済学者は、宇沢先生のいうような狡猾で心のない人ばかりではなく、エルスバーグのような人もいる、ということがすごいのだ。

 ちなみに、エルスバーグは、その後、2003年3月のブッシュ政権によるイラク侵攻のときも、政府を痛烈に批判し、「アメリカ政府核兵器を使用しかねない危険性をはらんでいる」と全世界に警告を発し、開戦後ホワイトハウス前で開かれたイラク攻撃の抗議集会に参加して逮捕された(拙著『確率的発想法』NHKブックス参照のこと)。

 そのエルスバーグは、実は、ぼくの研究の始祖・発祥にあたるのは奇遇だ。もちろん、エルスバーグに惚れて研究を始めたわけではなく、偶然にすぎない。でも、何か、運命のようなものを感じないわけではない。

 エルスバーグの博士論文は、確率的意思決定に関するものだ。当時は、経済学統計学ゲーム理論意思決定理論では、「主観的確率による期待効用」という概念が広く用いられていた。これは、人々が「効用の確率的期待値」を基準に行動を決定する、という考え方だ。しかし、エルスバーグは、簡単な実験によって、人々がそのような基準を使っていないことを指摘した(この点も拙著拙著『確率的発想法』NHKブックス参照のこと)。それ以来、「非期待効用理論」と呼ばれる方法論や、「ナイト的不確実性理論」と呼ばれる方法論の研究が進められるようになったのである。ちなみに、ぼくは後者の研究者であり、6本の公刊論文はすべてエルスバーグの研究に関連するものなのだ。

 だから、映画で役者が演じるとはいえ、エルスバーグがどんな感じの人なのかにはとても興味があった。そして、映画に出て来るエルスバーグは、めちゃめちゃカッコよかった。自分の研究が誇らしくなった(笑)。

 第三の(しかし、真の)主人公キャサリン・グラハムは、名優メリル・ストリープが演じている。この女性は、ワシントンポスト経営者だった夫が死んだので、経営者の座についたにすぎない女性だった。にもかかわらず、この事件の中で、普通の主婦から、気骨のある新聞経営者へと変貌を遂げていく。これは、ストリープの演技力の賜だ。この人が演じてこそのものだった。アメリカの新聞界にはこういう人物が生まれる土壌がある、ということがすばらしい。

 ストリープと言えば、名作『ディア・ハンター』が二作目の出演で出世作となっている。この映画は、ベトナム戦争に関するもので、あまりにすばらしい映画なのだ。いずれ紹介をエントリーしたいと思う。

 『ペンタゴン・ペーパーズ』が、現在の日本で公開されたのは意義深い。数枚の書類が世の中を転換させる、ということは起こりうるのだ。大統領を失墜させる、ということはありうるのだ。しかし、それには国民の、不正と虚偽を許さない魂と気骨が不可欠なのだ。

 ハリウッドは、こんな映画を作りうることが本当に尊敬できることだと思う。スピルバーグのような監督がいて、それを支えるスタッフとオーナーがいて、それを支える観客がいる。そういう意味で、アメリカはまだまだ捨てたものではない。映画はアメリカ人向けに作られているため、ほとんど解説をしないで、ものすごいスピードで進むので、若い人は少し事件をネットで調べてから行ったほうがいいと思う。大学生の息子も面白かったと言ってたので、きっと若い人が観ても楽しめ、感動できると思う。

 

2018-04-22

宇沢先生の理論のシンポジウムを土木学会が行います!

20:35

 宇沢弘文先生の社会的共通資本の理論に関するシンポジウムを、土木学会が実施する。タイトルは、「宇沢弘文社会的共通資本再考する」だ。

シンポジウム宇沢弘文社会的共通資本再考する」

日時:平成30年5月28日(月) 13:00−17:00

場所:土木学会講堂(新宿区四谷1丁目外濠公園内)

定員:120名

参加費:無料

ぼくも登壇するので、来場可能なかたは、是非いらしていただきたい。

案内のHPは↓。申し込みもこのHPからできる。

シンポジウム|土木計画学研究委員会

 以下、趣旨をHPから引用する。

宇沢弘文氏(1928-2014)は、数学者経済学者として様々な分野で影響を与えてきた。特に、土木分野においては、「自動車社会的費用」、「地球温暖化経済学」、そして「社会的共通資本」の著作はその時代の政策研究、論議に大きな影響を与えた。

このシンポジウムでは、「宇沢弘文の研究」の第一人者の帝京大学小島寛之教授を迎え、宇沢弘文の思想と理論について解説していただく。また、藤井聡教授、小池淳司教授から公共政策論、土木計画論の立場から社会的共通資本に関連する話題を提供していただく。

さらに、基調講演、話題提供を受けて、全体討議をすることにより、「宇沢弘文社会的共通資本」を再考するものである。

宇沢弘文の研究」の第一人者と言われるのは、嬉しくもあるけど、分不相応で恐縮してしまう。だって、宇沢先生のお弟子さんで、高名な経済学者はたくさんいるから。でも、宇沢先生の新古典派としての仕事ではなく、こと「社会的共通資本の理論」を、相当に読み込んで、さらには、先生自身からも直接指導を受けた中で現役の理論系経済学者なのは、ひょっとするとぼくだけかもしれないから、そういう意味では、「宇沢弘文の研究」の第一人者と言われてもそんなに嘘ではないかもしれない。

基調講演をすることになっているのだけれど、時間をたっぷりいただいているので、先生の新古典派の仕事も紹介した上で、先生がどのように経済思想を変遷されていったかを浮き彫りにしたいと思っている。さらには、ぼくが語れる限界内でだけれど、「社会的共通資本の理論」を現代の中でどう再考し、どう発展させるべきかも主張してみたいと思っている。

宇沢先生は、『自動車社会的費用』というすごい本を書いて、当時の自動車業界や道路行政と鋭く対峙した。時代は変わり、土木学会が、先生の理論に学術的関心を寄せている、ということは感慨深いことであるし、学者の世界というのは捨てたものではないな、と思う。

是非、できるだけたくさんの人に聴きにきていただきたい。