(2020/12/20) X Y (0,0,0) Ω ω θ (x,y,z) (-2aε(cos ω cos Ω-sin ω sin Ω cos ι) ,-2aε(cos ω sin Ω-sin ω cos Ω cos ι) ,-2aε sin ω sin ι) 前回*1、軌道位置、経過時間、軌道速度、軌道速度ベクトル、移動距離を求めました。このなかで、軌道位置と軌道速度ベクトルは三次元の指標で表す必要があります。前提として軌道長半径を a、離心率を ε、公転周期をP で表します。 軌道位置 近点引数(ω)、軌道傾角(ι)、昇交点角(Ω)がすべて 0 のとき、三次元の点(x,y,z) は次のよ…